
Eur. Phys. J. B 36, 419–422 (2003)
DOI: 10.1140/epjb/e2003-00361-6 THE EUROPEAN

PHYSICAL JOURNAL B

Andreev scattering and cotunneling between two
superconductor-normal metal interfaces: the dirty limit

D. Feinberga
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Abstract. Crossed Andreev reflections and cotunneling occur between two neighbouring superconductor-
normal metal or superconducting-ferromagnet interfaces. Previous works assumed a clean BCS supercon-
ductor. Here the calculation of the corresponding crossed conductance terms is generalized to a dirty su-
perconductor. The range of the effect is shown to be the coherence length ξ̃ =

√
�D/∆, instead of the BCS

coherence length ξ0. Moreover, in three dimensions, the algebraic prefactor scales as 1/r instead of 1/r2.
The calculation involves the virtual diffusion probability of quasiparticles below the superconducting gap,
in the normal and the anomalous channel.

PACS. 74.45.+c Proximity effects; Andreev effect; SN and SNS junctions – 73.63.Rt Nanoscale contacts
– 74.78.-w Superconducting films and low-dimensional structures

Introduction

Hybrid structures involving superconductors and normal
or ferromagnetic metals have received considerable inter-
est in the context of spintronics [1]. More recently, mul-
titerminal structures were considered, where two metallic
leads are connected at a small distance to the same super-
conductor [2,4,3,5–9]. Coherent scattering may occur be-
tween those leads, leading to original crossed conductance
channels [10,5]. The first one generalizes Andreev reflec-
tion: an electron (resp. hole) incident on either contact is
reflected as a hole (resp. electron) in the other one. This
amounts to having a Cooper pair transferred to (from) the
superconductor, each electron of the pair passing at a dif-
ferent contact in the same direction. One may also have an
electron (hole) reflected as an electron (hole) from one con-
tact to the other. This process which generalizes normal
reflection has been named cotunneling since, in presence of
the superconducting gap, a quasiparticle propagates in the
superconductor as an evanescent state, in a way similar to
what happens in presence of Coulomb blockade [11]. No-
tice that here cotunneling is essentially elastic. The calcu-
lation of the scattering amplitudes and the corresponding
non-local conductances was performed in references [5,8]
in the case of a clean BCS superconductor. Normal re-
flections lead to cotunneling, which conserves spin, while
anomalous reflections lead to crossed Andreev conduc-
tance involving opposite spin channels in the two leads.
These effects give rise to a variety of new phenomena and
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potential applications. On one hand, when the leads are
spin-polarized, the symmetry between these two processes
is broken and interesting nonlocal magnetoconductance
effects have been predicted [4,5]. They can be used as a
novel principle for a spin-sensitive STM [9]. On the other
hand, crossed Andreev processes, as they lead to spatially
separated singlet pairs, have signatures in crossed noise
correlations [12–14]. They can also be used as a source of
entangled electron pairs, a crucial resource for the treat-
ment of quantum information [15,16].

In order to maximize the crossed conductance effects,
it is essential to optimize the physical regimes, the parame-
ters and the geometry. For instance, for point contacts, the
dependence of the crossed conductances with the contact
distance r is found to be ∼ ( 1

kF r )2e−2r/πξ0 where kF is the
Fermi wavevector and ξ0 the BCS coherence length [5,15].
This result is valid for a clean three-dimensional supercon-
ductor, and the algebraic prefactor reduces very strongly
the amplitude of the effect for realistic distances. For a 2D
(resp. 1D) superconductor, the exponent in the prefactor
is instead found to be 1 (resp. 0), offering a neat advan-
tage. This led to the proposal of inducing superconductiv-
ity in carbon nanotubes, in order to reach an effective 1D
geometry [17,18]. Another possibility is to use extended
contacts, which cancels the prefactor (see for instance [9]).

In the present work, the calculation of the crossed con-
ductances is generalized to a diffusive superconductor. If
the mean-free path l is smaller than the bare coherence
length ξ0, the question is: which one of the typical lengths,
l or the coherence length ξ =

√
�D/∆ ∼ √

ξ0l, controls
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Fig. 1. Schema of a set-up with two neighboring S/N junc-
tions. 1 and 2 denote normal leads; a) point-like contacts; b)
extended contacts.

the range of the effect? The calculation involves the diffu-
sion of (evanescent) quasiparticles between the two con-
tacts. As a result, the range is found to be of order ξ.
Although not really surprising, this result is not obvious
a priori: ξ is known to be the typical length for the varia-
tions of the superconducting order parameter, while we are
interested here into the damping length for quasiparticles.
In other terms, it is not clear that in the diffusive regime
the spatial dependence of the single particle propagator
and of the local pair amplitude are governed by the same
length. Moreover, we find that in a three-dimensional dirty
superconductor the prefactor becomes (kF l)−1(kF r)−1 in-
stead of (kF r)−2. Owing to the crucial importance of the
prefactor, this noticeably increases the crossed effects as
compared to a clean system.

This paper is organized as follows. In Section 1, using
a tunneling Hamiltonian, the general result for the current
across one of two neighbouring S/N interfaces is recalled.
In Section 2, the calculation is performed for a dirty su-
perconductor, within the lowest order approximation. The
effect of dimensionality and geometry are discussed at the
end of the paper.

Clean superconductor: tunneling interfaces

Let us consider a ballistic BCS superconductor, connected
to two leads 1 and 2 (depicted in Fig. 1), with voltages V1

and V2 with respect to the superconductor, by tunneling
contacts described by the Hamiltonian:

HT1 =
∑
kpσ

T 1
kp c†kσdpσ + h.c.;

HT2 =
∑
pqσ

T 2
pq d†pσcqσ + h.c. (1)

where T 1
kp and T 2

qp are matrix elements (hereafter assumed
to be equal to T1, T2) between single electron states k ∈ 1,
p ∈ S and q ∈ 2.

Let us first consider single channel leads, at T = 0.
Here we limit ourselves to lowest order results, which can
also be obtained by the Keldysh technique [6–8,19] or
the golden rule approximation [5,20]. Dropping the usual
Andreev reflection current [20], we focus on the nonlocal
contributions, e.g. the current induced in one lead by the
voltage applied on the other. Using the fact that the spec-
tral functions gi’s (i = 1, 2) in the metallic leads decay
on the scale of the Fermi wavelength, one obtains [5] for

the “Crossed Andreev” current ICAnd and the “Elastic
Cotunneling” current IECot

ICAnd =
∑

σ

4π2e

h
|T 1T 2|2

∫
dω ΞAnd

12 (ω, σ)

× [nF (ω − eV1) − nF (ω + eV2)] (2)

IECot =
∑

σ

4π2e

h
|T 1T 2|2

∫
dω ΞCot

12 (ω, σ)

× [nF (ω − eV1) − nF (ω − eV2)] (3)

with

ΞAnd
12 (ω, σ) =

∫
1

d�r1

∫
2

d�r2 f r
σ(ω, r12)

× fa
σ(ω, r21) g1σ(ω)g2−σ(−ω) (4)

ΞCot
12 (ω, σ) =

∫
1

d�r1

∫
2

d�r2 gr
σ(ω, r12)

× ga
σ(ω, r21) g1σ(ω)g2σ(ω) (5)

where the integrals run on the contact areas, rij =
|�ri−�rj |, gr

σ(ω, rij) and f r
σ(ω, rij) are respectively the time

Fourier transforms of the normal −i〈T {ciσ(t), c†jσ(0)}〉
and anomalous i〈T {ciσ(t), cjσ(0)}〉 bare retarded Green’s
functions in the superconductor. Those are given in three
dimensions by

gr(r, ω) = − m

2π�2

1
r

e−r/2ξ(ω)

× [sin kF r
ω√

∆2 − ω2
+ cos kF r] (6)

f r(r, ω) = − m

2π�2

1
r

e−r/2ξ(ω) sinkF r
∆√

∆2 − ω2
(7)

where ξω = ξ0
∆√

∆2−ω2 is a generalized frequency-
dependent coherence length. One can then calculate
the conductances associated respectively to crossed An-
dreev and elastic cotunneling processes, e.g. GCAnd =
dICAnd/d(V1 + V2) and GECot = dIECot/d(V1 − V2). Up
to geometrical factors, the result for interfaces of radius
a � ξ0 but much larger than the Fermi length k−1

F and
distant by r � a (Fig. 1a) is [5]

GCAnd ∼ h

8e2

∑
σ

G1σG2−σ
e−2r/πξω

(kF r)2

GECot ∼ h

8e2

∑
σ

G1σG2σ
e−2r/πξω

(kF r)2
. (8)

Here G1σ and G2−σ are the one-electron conductances
in the normal state for a given spin. As shown in refer-
ences [4,5,8], both crossed conductances can be distin-
guished and measured as soon as leads 1 and 2 are spin-
polarized. A recently proposed alternative is to use the
crossed correlations of shot noise [14].

The dimensionality of the superconductor is crucial:
the BCS coherence length for a clean superconductor can
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Fig. 2. The diffuson diagrams in the superconductor, showing
multiple impurity scattering of quasiparticles in the normal
(a) and the anomalous (b) channel. Continuous lines denote
the propagators g (a) and f (b), dotted lines the impurity
vertices.

be quite large, and the algebraic factor describing the bal-
listic propagation of quasiparticles in S is the most limit-
ing effect in three dimensions. The constraint is weaker in
two dimensions where it becomes ∼ e−2r/πξω

kF r , and in one
dimension where one finds e−2r/πξω [17].

Case of a diffusive superconductor

Disorder is always present in low dimensional supercon-
ductors (films) thus it is important to consider the dif-
fusive limit where elastic scattering occurs with a mean-
free path l. We assume no spin scattering that could be
due to magnetic impurities or spin-orbit interaction. Us-
ing the golden rule or Keldysh technique, one can gen-
eralize equations (2–5) for any realization of the disor-
der by replacing the bare Green’s functions g and f by
the ones dressed by impurity scattering. On the other
hand, disorder averaging implies to perform the average on
the products of retarded and advanced Green’s functions
grga and f rfa. These averages are related to the normal
and the anomalous integrated diffusion probabilities [21],
P(r) =

∫ ∞
−∞ dt P(�r1, �r2, t) for r = r12.

P(r12) =
1

2πρ0
gr

σ(r12, ω) ga
σ(r21, ω) (9)

P̃(r12) =
1

2πρ0
f r

σ(r12, ω) fa
σ(r21, ω) (10)

taken at ω ∼ εF . ρ0 is the normal state density of states
in the superconductor, and P(r) corresponds to the dif-
fuson in a normal metal (electron-electron channel), and
P̃(r) is the analogue with normal propagators replaced
by anomalous ones (see Fig. 2). The former describes the
virtual diffusion (below the gap) of an out-of- equilibrium
quasiparticle, electron or hole. The second describes the
anomalous diffusion of an electron becoming a hole (with
emission of a Cooper pair) or vice-versa.

The solution for the diffusons starts from the Drude-
Boltzmann approximation, where the g’s and f ’s are in-
dependently averaged on disorder

P0(r12) =
1

2πρ0
gr

σ(ω, r12) ga
σ(ω, r21) (11)

P̃0(r12) =
1

2πρ0
f r

σ(ω, r12) fa
σ (ω, r21) (12)

where gr,a(ω, r) and f r,a(ω, r) are obtained from the prop-
agators gr,a(ω, r) and f r,a(ω, r) in the clean supercon-
ductor case, e.g. gr,a(ω, r) = gr,a(ω, r)e−r/2l, f r,a(ω, r) =
f r,a(ω, r)e−r/2l [22].

The full diffusons are obtained from the integral equa-
tion [21]

P(�r1, �r2)) = 2πρ0

×
∫

d�r′d�r′′ P0(�r1, �r
′) Γ (�r′, �r′′) P0(�r′′, �r2)

(13)

P̃(�r1, �r2) = 2πρ0

×
∫

d�r′d�r′′ P̃0(�r1, �r
′) Γ̃ (�r′, �r′′) P̃0(�r′′, �r2)

(14)

the vertex function Γ obeying

Γ (�r1, �r2) = γeδ(�r1 − �r2) +
1
τe

×
∫

d�r′ Γ (�r1, �r
′) P0(�r′, �r2) (15)

Γ̃ (�r1, �r2) = γeδ(�r1 − �r2) +
1
τe

×
∫

d�r′ Γ̃ (�r1, �r
′) P̃0(�r′, �r2) (16)

where γe = (2πρ0τe)−1 is the bare vertex and and τ−1
e =

2πρ0ni|vi|2 = vF

l the inverse scattering time for an den-
sity ni of impurities with potential strength vi.

Let us consider the dirty limit l < ξ0, which means that
the quasiparticle encounter many collisions before decay-
ing. Then P0, P̃0 decay on l while Γ a priori decays more
slowly, allowing a gradient approximation

Γ (�r1, �r2) ∼ γeδ(�r1 − �r2) +
1
τe

Γ (�r1, �r2) 〈P0(r)〉
+ ∇2Γ (�r1, �r2) 〈r2P0(r)〉 (17)

Γ̃ (�r1, �r2) ∼ γeδ(�r1 − �r2) +
1
τe

Γ̃ (�r1, �r2) 〈P̃0(r)〉
+ ∇2Γ̃ (r1, r2) 〈r2P̃0(r)〉. (18)

One easily calculates

〈P0(r)〉 = 〈P̃0(r)〉 = τe
∆2

∆2 − ω2

1
1 + l

ξω

(19)

〈r2P0(r)〉 = 〈r2P̃0(r)〉 = 2τe
∆2

∆2 − ω2

l2

(1 + l
ξω

)3
. (20)

This leads to the solution, valid for r � l

P(r) = P̃(r) = (1 +
l

ξω
)

∆2

∆2 − ω2

1
4πDr

e−r/ξ̃ω (21)

with

ξ̃−2
ω = (Dτe)−1 (1 +

l

ξω
)2

[
l

ξω
− ω2

∆2
− l

ξω

ω2

∆2

]
. (22)



422 The European Physical Journal B

To lowest order in l
ξω

and ω
∆ , one finds

ξ̃ω ∼
√

Dτeξω

l
∼

√
lξω (23)

justifying a posteriori the above gradient approximation.
We thus find that in the dirty limit, the range of the

diffusons, thus of the non-local scattering probabilities, is
reduced only to the “dirty limit” coherence length, and
not to the mean-free-path. As for ξω , it diverges as ω ap-
proaches the superconducting gap.

We can now write the crossed conductances

GCAnd ∼ h

8e2

∑
σ

G1σG2−σ
e−r/ξ̃ω

�ρ0Dr

GECot ∼ h

8e2

∑
σ

G1σG2σ
e−r/ξ̃ω

�ρ0Dr
. (24)

Besides the smaller decay length, one notices the dif-
ferent algebraic dependence, in 1/r instead of 1/r2 for
the clean limit. In more detail, the conductances vary like

1
(kF r)(kF l)e

−r/ξ̃, showing that for l < r < ξ̃, the dirty case
is more favourable than the clean one. This result holds
when all the dimensions of the superconductor are larger
than l. If one of them is smaller (very thin film), diffusion
becomes two-dimensional and the solution of the diffu-
sion equation leads to a dependence 1√

r
e−r/ξ̃ if r > ξ̃ and

− ln( r
ξ̃
) if r < ξ̃, again showing the advantage of diffusive

behaviour.
One can use this result to evaluate the conductance

for extended contacts 1 and 2. From equations (2–5) it is
given approximately by

GCAnd,ECot ∼
∫

d�r1 d�r2 GCAnd,ECot(r12). (25)

As an example, for two linear contacts facing each other
at a distance R < ξ̃, of length and width much larger than
ξ̃ (Fig. 1b), one easily finds that the 1/r factor integrates
out and GCAnd,ECot ∼ e−R/ξ̃.

To summarize, we have shown that Andreev and co-
tunneling processes between distinct tunneling contacts
on a dirty superconductor decay on the coherence length
ξ̃ =

√
lξ0, and that the algebraic prefactor decreases like

1/r with the contact distance instead of 1/r2 in the clean
case. For extended contacts closer than ξ the crossed con-
ductances can be more easily observed.

The author is grateful to G. Montambaux and G. Deutscher for
stimulating discussions. After completing this work the author
was informed about an equivalent but less detailed calculation
of crossed Andreev amplitude with a dirty superconductor [23].
LEPES is under convention with Université Joseph Fourier.
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